Math 115
Fall 2018

Lecture 23

$3 a^{2}+1 b^{2}=c^{2} ?$
$y=100 x+b \quad d=r t$

Feb 19-8:47 AM
factor Completely:
(1) $x^{5}-25 x^{3}=x^{3}\left(x^{2}-25\right)$

$$
=x^{3}\left(x^{2}-5^{2}\right)=x^{3}(x+5)(x-5)
$$

(2) $\underbrace{x^{3}+2 x^{2}}-4 x-8=x^{2}(x+2)-4(x+2)$
$=(x+2)\left(x^{2}-4\right)$
$=(x+2)(x+2)(x-2)=(x+2)^{2}(x-2)$
(3) $x^{2}(x+3)-5 x(x+3)+6(x+3)$

$$
\begin{aligned}
& =(x+3)\left(x^{2}-5 x+6\right) \\
& =(x+3)(x-2)(x-3)
\end{aligned}
$$

$$
\begin{aligned}
&(4) \\
& \substack{P=-15 \\
S=-2 \\
-5,3} x^{2}-2 x
\end{aligned}-15=\underbrace{x^{2}-5 x}+3 x-15
$$

$$
\underbrace{x^{2}-2 x y-3 y^{2}}_{\substack{P=-3 \\ S=-2 \\-3,1}}=\underbrace{x^{2}-3 x y}+\underbrace{1 x y-3 y^{2}}
$$

$$
\text { (6) } 4 x^{-3,1}-28 x^{4}+40 x^{3}
$$

$$
=(x-3 y)(x+y)
$$

$$
=4 x^{3}\left(x^{2}-7 x+10\right)
$$

$$
=4 x^{3}(x-2)(x-5)
$$

Dec 3-6:12 AM

$$
\begin{aligned}
& \text { (7) } 2 x^{2}-5 x-12=2 x^{2}-8 x+\underbrace{3 x-12} \\
& P=-24 \\
& S=-5-24=2 x(x-4)+3(x-4) \\
&-8,3=(x-4)(2 x+3)
\end{aligned}
$$

$$
\begin{aligned}
(8) 2 x^{2}+7 x+6 & =\underbrace{2 x^{2}+4 x}+3 x+6 \\
\begin{array}{l}
P=7 \\
4 \leqslant 3
\end{array} & =2 x(x+2)+3(x+2) \\
& =(x+2)(2 x+3)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { (9) } \\
P=18 \\
S=-11 \\
-2 x^{2}-11 x+3
\end{array} \\
=
\end{array}=\underbrace{6 x^{2}-2 x}_{18}-\underbrace{9 x+3 x-1)-3(3 x-1)} \\
& =(3 x-1)(2 x-3)
\end{aligned}
$$

(10) $x^{3}-49 x$

$$
=x\left(x^{2}-49\right)=x(x+7)(x-7)
$$

(11) $81 x^{2}-36=9\left(9 x^{2}-4\right)$
(13) $2 x^{5}-16 x^{2}$

$$
=2 x^{2}\left(x^{3}-8\right)
$$

$$
=2 x^{2}\left(x^{3}-2^{3}\right)
$$

(12)

$$
=x\left(x^{3}+125\right)
$$

$$
=x\left(x^{3}+5^{3}\right)
$$

$$
=x(x+5)\left(x^{2}-5 x+25\right)
$$

Dec 3-6:37 AM
(14) $36 x^{2}-60 x+25=(6 x-5)^{2}$
(15)

$$
\begin{aligned}
& 18 x^{2} y+48 x y^{2}+32 y^{3} \\
&= 2 y\left(9 x^{2}+24 x y+16 y^{2}\right)=2 y(3 x+4 y)^{2} \\
& 2.3 x .4 y
\end{aligned}
$$

(16) $81 x^{2}-198 x+121$

$$
=(\underbrace{9 x-11})_{2.9 \times 11}^{2})
$$

Solving Polynomial Equations

1) Make RHS Zero.
2) Factor the LHS Completely.
3) Use Zero-factor Property, and Solve all factors.
4) Final Ans in Solution Set.

Zero-Factor Prop.:
If $A \cdot B=0$, then $A=0$ or $B=0$ or both are Zero.

Dec 3-7:42 AM

Solve $(x-1)(x+8)=0$
RHS $=0 \checkmark$ LHS completely factored
By Z.F.P. $\Rightarrow x-1=0$ or $x+8=0$
$x=1$
$x=-8$

$$
\{-8,1\}
$$

Solve $(2 x-5)(3 x+4)=0$

$$
\begin{array}{lcl}
\text { RHS }=0 \checkmark & \text { By Z.F.P. } & \\
\text { LHS Factored } & 2 x-5=0 & \text { or } \\
\text { Completely, } & 2 x=5 & 3 x+4=0 \\
& x=\frac{5}{2} & \\
& x=-\frac{-4}{3}\left[\frac{-4}{3}, \frac{5}{2}\right\}
\end{array}
$$

Solve $\quad x^{2}+6=5 x$
Make RHS $=0$

$$
\begin{aligned}
& x^{2}+6-5 x=0 \\
& x^{2}-5 x+6=0 \\
& (x-2)(x-3)=0
\end{aligned}
$$

factor LIAS

By E.F.P.

$$
x-2=0 \text { or } x-3=0
$$

$$
x=2
$$

$$
x=3
$$

Soln Set

$$
\{2,3\}
$$

Solve $2 x^{2}+20=13 x$

1) RHO $=0 \quad 2 x^{2}+20-13 x=0$
2) order, simplify, factor

$$
\begin{aligned}
& \begin{array}{l}
P=40 \\
S=-13 \\
-8,-5
\end{array}
\end{aligned} \underbrace{2 x^{2}-13 x+20=0}+\underbrace{2 x^{2}-8 x}_{2 x(x-4)-5(x-4)=0}-5 x+20=0
$$

3) Use Z.F.P.

$$
\begin{array}{rl}
(x-4)(2 x-5) & =0 \\
x-4=0 & 2 x-5=0
\end{array}
$$

$$
\text { 4) Solution Set }\left\{\frac{5}{2}, 4\right\} \quad x=4 \quad x=\frac{5}{2}
$$

Solve $x^{2}=x+30$

$$
\begin{aligned}
& x^{2}-x-30=0 \\
& (x-6)(x+5)=0
\end{aligned}
$$

By Z.F.P.,

$$
\begin{gathered}
x-6=0 \text { or } x+5=0 \\
x=6 \\
\{-5,6\}
\end{gathered}
$$

Solve $2 x^{2}=x+6$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
P=-12 \\
S=-1 \\
-4 \xi 3
\end{array} \\
\underbrace{2 x^{2}-x^{x}-6}_{-12}=0 \\
\underbrace{2 x^{2}-4 x}+\underbrace{0}+3 x-6)+3(x-2)=0
\end{array} \\
& (x-2)(2 x+3)=0 \\
& \left\{\frac{-3}{2}, 2\right\} \\
& \text { By Z.F.P. } \\
& x-2=0 \text { or } 2 x+3=0 \\
& x=2 \quad x=\frac{-3}{2}
\end{aligned}
$$

Solve $\quad x^{2}=24-5 x$

$$
\begin{aligned}
& x^{2}-24+5 x=0 \\
& x^{2}+5 x-24=0 \\
& (x+8)(x-3)=0
\end{aligned}
$$

By Z.F.P.

$$
\begin{array}{lc}
x+8=0 & \text { or } x-3=0 \\
x=-8 & x=3
\end{array}\{-8,3\}
$$

Solve $\quad x(x+7)=30$

$$
\begin{aligned}
& x^{2}+7 x=30 \\
& x^{2}+7 x-30=0 \\
& (x+10)(x-3)=0
\end{aligned}
$$

By Z.F.P.

$$
\begin{array}{ll}
x+10=0 & x-3=0 \\
x=-10 & x=3
\end{array} \quad\{-10,3\}
$$

Solve $\quad(2 x+3)(x+4)=25$
Foil \& Simplify

$$
\begin{aligned}
& 2 x^{2}+8 x+3 x+12=25 \\
& 2 x^{2}+11 x+12=25
\end{aligned}
$$

RHO $=0$, simplify

Solve $3 x(x+1)=(2 x+3)(x+1)$
Hint: Distribute \sum_{1} Foil, then Simplify

$$
\begin{aligned}
& 3 x^{2}+3 x=2 x^{2}+2 x+3 x+3 \\
& 3 x^{2}+3 x-2 x^{2}-2 x-3 x-3=0 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& \text { By Z.F.P. } \quad x-3=0 \quad x+1=0 \\
& x=3 \quad x=-1 \\
& \{-1,3\}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& x^{2}=100 \\
& x^{2}-100=0 \\
& x^{2}-10^{2}=0 \\
& (x+10)(x-10)=0
\end{aligned}
$$

by Z.F.P.

$$
\begin{array}{ll}
x+10=0 & x-10=0 \\
x=-10 & x=10
\end{array}
$$

$$
\{-10,10\} \text { or }\{ \pm 10\}
$$

Solve

$$
\begin{aligned}
& 36 x^{2}-40=9 \\
& 36 x^{2}-40-9=0 \\
& 36 x^{2}-49=0 \\
& (6 x)^{2}-(7)^{2}=0 \\
& (6 x+7)(6 x-7)=0 \\
& \text { By Z.F.P. } \\
& 6 x+7=0 \quad 6 x-7=0 \\
& 6 x=-7 \quad\left\{x=7 \quad\left\{ \pm \frac{7}{6}\right\}\right. \\
& x=\frac{-7}{6} \quad x=\frac{7}{6}
\end{aligned}
$$

find x :

can x be negative?

$$
\begin{gathered}
\text { NO } \\
\frac{x=5}{} \\
5 \mathrm{st} \frac{A=40 \mathrm{ft}^{2}}{8 \mathrm{ft}}
\end{gathered}
$$

Rectangle

$$
\begin{aligned}
& A=40 \\
& L W=40 \\
& x(x+3)=40
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+3 x=40 \\
& x^{2}+3 x-40=0 \\
& (x+8)(x-5)=0 \\
& \text { By Z.F.P. , } \\
& x+8=0 \quad x-5=0 \\
& x=-8 \quad x=5
\end{aligned}
$$

The Product of two consecutive integers is 90 find/all such integers.

$$
\begin{aligned}
& x^{2}(x+1)=90 \\
& x^{2}+x=90 \\
& x^{2}+x-90=0 \\
& (x+10)(x-9)=0
\end{aligned}
$$

x	$x+1$
9	10
-10	-9

By Z.F.P.

$$
\begin{array}{cc}
x+10=0 & x-9 \\
x=-10 & x=9
\end{array}
$$

The product of two consecutive even integers is 80.

$$
x \xi_{1} x+2
$$

find all such integers.

$$
x^{2}(x+2)=80
$$

\square
Solve

$$
\begin{aligned}
& x(x+2)=80 \\
& x^{2}+2 x=80 \\
& x^{2}+2 x-80=0 \\
& (x+10)(x-8)=0 \\
& \text { By Z.F.P. } \\
& x+10=0 \\
& x-8=0 \\
& x=-10
\end{aligned}
$$

The area of a rectangular shape is $63 \mathrm{~m}^{2}$. Its dimensions are two consecutive odd integers.
find its dimensions.

$$
\begin{aligned}
& A=63 \\
& L W=63 \\
& x(x+2)=63 \\
& x^{2}+2 x-63=0 \\
& (x+9)(x-7)=0 \\
& \text { By Z.F.P., } x+9=0 \text { or } x-7=0
\end{aligned}
$$

The area of a rectangular shape is $80 \mathrm{ft}^{2}$. Its length is 1 ft longer than 3 times its width.
(1) Draw É label
(2) Find its dimensions.

$$
A=80
$$

$$
L W=80
$$

$$
x(3 x+1)=80
$$

$$
3 x^{2}+x=80
$$

$3 x^{2}+x-80=0$
$P=-240$
$S=1$
$-15 \dot{\varepsilon}_{1} 16$

$$
\begin{aligned}
& 3 x^{2}-15 x+16 x-80=0 \\
& 3 x(x-5)+16(x-5)=0 \\
& (x-5)(3 x+16)=0 \\
& \text { By Z.F.P. } \Rightarrow x=5, x=\frac{16}{3}
\end{aligned}
$$

Factor Completely: Box Your final Answer
(1)

$$
\begin{aligned}
& 7 x+14 \\
& =7(x+2)
\end{aligned}
$$

(3)

$$
\begin{aligned}
& x^{2}+6 x-27 \\
= & {[(x+9)(x-3)] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } 2 x y-8 y+3 x-12 \\
& =2 y(x-4)+3(x-4) \\
& =(x-4)(2 y+3)
\end{aligned}
$$

(4) $25 x^{2}-121$

$$
\begin{aligned}
& =(5 x)^{2}-(11)^{2} \\
& =(5 x+11)(5 x-11)
\end{aligned}
$$

